If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+256=64X
We move all terms to the left:
X^2+256-(64X)=0
a = 1; b = -64; c = +256;
Δ = b2-4ac
Δ = -642-4·1·256
Δ = 3072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3072}=\sqrt{1024*3}=\sqrt{1024}*\sqrt{3}=32\sqrt{3}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-32\sqrt{3}}{2*1}=\frac{64-32\sqrt{3}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+32\sqrt{3}}{2*1}=\frac{64+32\sqrt{3}}{2} $
| F(x)=13+2x-6 | | −2(x−3)=17 | | 3x-15=-2x-3 | | 1/5y-10=-4 | | q+2/3=2 | | 40(e+100)=42e | | (6x+60)+(8x-20)=180 | | 8-r=3 | | -12x+10=19-4x | | 9=3(b+2) | | x+1=5-6 | | 27-1x=18 | | 7z-23=33 | | 2x+5x+x=38 | | 2x-(3+x)=2 | | 6x+28=8x-8 | | 7*a=22 | | 21=-16t^2+8t+24 | | (6x+28)+(8x-8)=180 | | X=9-(3+2x) | | X^2+16^2=8x^2 | | (3x+30)+(24x+15)=180 | | 17-4=x+3+x | | 4.8d=2.3 | | 3x+7x=-7-8 | | (3x+14)+(5x-36)=180 | | 6=10-g | | 2(a-8)+3(a+6=17 | | 7+5-1=8x-3+14 | | 7/10=4/15+x | | -3d=(4)=2 | | 2x+4-1=28+1 |